ROUND I Number theory
ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Explore powers of 3 . Determine the units digit of 3^{22}.
2. $11.11_{2}+101.101_{2}=?_{10}$
3. The greatest common divisor of a pair of numbers is 315 and the least common multiple of the pair is $3^{2} \cdot 5^{3} \cdot 7^{2}$. Find both pairs of whole numbers which satisfy these conditions

ANSWERS

$(1 \mathrm{pt}) 1$.
(2 pts) 2. \qquad
$(3 \mathrm{pts}) 3$ \qquad and

Assabet Valley, St. John's, Shrewsbury

ROUND II: Algebra 1 - open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Evaluate this expression if $a=-9 ; g=\frac{2}{3} ; i=8 ; o=-6 ; p=\frac{1}{2} ; r=-0.8 ; s=\sqrt{121} ; t=-12$: go-patriots
2. In the equation $2 x+3 y=24$, the variables x and y are non-negative integers. Find the number of ordered pairs (x, y) which satsify this equation.
3. A bank teller was to change a $\$ 20$ bill into quarters and dimes. She made an error and interchanged the number of quarters and the number of dimes, thereby paying out $\$ 9$ more than she should have. How many dimes should she have paid out?

ANSWERS

$(1 \mathrm{pt}) 1$.
(2 pts) 2. \qquad
(3 pts) 3. \qquad

Bromfield, Tahanto, Westborough

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Find the value of c :

2. In the squares shown, the vertices A, B, and C lie in a striaght line. Find the value of length x.

3. The vertices of an equilateral triangle are the midpoints of the sides of a larger equilateral triangle. A circle is inscribed in the smaller triangle. Find the exact ratio of the area of the circle to the area of the larger triangle. Do not approximate π or any radicals involved.

ANSWERS

$(1 \mathrm{pt}) 1$.
(2 pts) 2. \qquad
(3 pts) 3.

[^0]ROUND IV: Logs, exponents, radicals

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Express in simplest form: $3 \cdot 8^{\frac{2}{3}} \cdot\left(\frac{27}{8}\right)^{\frac{-1}{3}}$
2. Solve the radical equation $\sqrt{x+6}+x=14$
3. Solve for $\mathrm{x}: \log _{2} x \cdot \log _{4} x \cdot \log _{6} x=\log _{2} x \cdot \log _{4} x+\log _{2} x \cdot \log _{6} x+\log _{4} x \cdot \log _{6} x$

ANSWERS
(1 pt) 1 .
(2 pts) 2. \qquad
(3 pts) 3. \qquad
Bromfield, Tahanto, Westborough

ROUND V: Trigonometry - open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM, EXCEPT NUMBER 1

1. An airplane leaves the runway climbing at 18° on a straight path with a constant speed of 285 feet per second. Find the altitude of the plane after one minute, to the nearest foot.
2. A sector of a circle has area 25 sq cm and central angle 0.5 radian. Find the radius and arc length Include units!
3. Solve for x : $\sin \left[(\arccos \mathrm{x})-30^{\circ}\right]=\mathrm{x} .\left(\arccos \mathrm{x}\right.$ is the same as $\cos ^{-1} x$ or inverse $\left.\cos \mathrm{x}\right)$

ANSWERS

(1 pt) 1.
$f t$
(2 pts) 2. radius
arc length
(3 pts) 3.
Holy Name, Shrewsbury, Westborough

TEAM ROUND Topıcs of previous rounds and open

ALL ANWERS MUST BE IN SIMPLEST EXACT FORM UNLESS SPECIFIED OTHERWISE IN THE PROBLEM

1 The three digit number 2 A 3 is added to the number 326 to give the three digit number 5B9 If 5B9 is divisible by 9 , then $\mathrm{A}+\mathrm{B}$ must equal what?

2 At the present time, the sum of the ages of a father and his son is 33 years Find the smallest whole number of years untıl the father's age is 4 times the son's age

3 A circle, containing point A and tangent to the x-axis, rolls without slipping along the x-axis, starting with point A at the origin If after 3.5 revolutions point A is at (π, y), find y

4 If $x>y>0$, hist by letter those conclusions which are always true "a" may be any real number
A $\quad x+a>y+a$
D $1 / \mathrm{x}>1 / \mathrm{y}$
B $\quad \log _{\frac{1}{2}} x>\log _{\frac{1}{2}} y$
E $\quad a^{x}>a^{y}$
C $\quad x\left(\log _{10} 0.1\right)>y\left(\log _{10} 0.1\right)$
F $\sqrt{x}>\sqrt{y}$

5 For $0 \leq x \leq \pi$, at how many points do the graphs of $\mathrm{y}=\sin (60 \mathrm{x})$ and $\mathrm{y}=\tan (30 \mathrm{x})$ intersect?

6 Write the next term in this geometric sequence $\sqrt{2}, \sqrt[3]{2}, \sqrt[6]{2}$,
7 If the arithmetic mean of z and y is 6 and their geometric mean is 5 , write a quadratic equation in $x^{2}+b x+c=0$ form that has z and y as its roots

8 How long, to the nearest day, is 101 seconds?
9 How many points (x, y) on or inside the circle $x^{2}+y^{2}=50$ have nothing but integer coordinates?

Round I
\# thry
2. 2 pts 9.375 or $9 \frac{3}{8}$

315,55125 order
3. 3 pts and 2205,7875 matter

Round II 1. $1 \mathrm{pt} 273,711.2$ alg 1
2. 2 pts 5
3. 3 pts 100

Round III 1. 1 pt 95 or 95° geom
2. 2 pts 12.25 or $12 \frac{1}{4}$ or $\frac{49}{4}$
3. 3 pts $\frac{\pi}{12 \sqrt{3}}$ or $\frac{\pi \sqrt{3}}{36}$ or in a form

Round IV
logs
exp
rad
2. 2 pts

10
3. $3 \mathrm{pts} \quad 1 \propto 48$
need both and or comma OK

Round V

1. 1 pt 5284
trig
2. $2 \mathrm{pt} \quad r=10 \mathrm{~cm}$ need both arc $=5 \mathrm{~cm}$
3. 3 pts $\frac{1}{2}$ or .5

Team Round
2 pts each

1. 6
2. 1
3. $\frac{2}{7}$
4. A, F
5. 91
6. $x^{2}-12 x+25 \underbrace{=0}_{\text {needed }}$
7. 42
8. 161

ROUND I

$$
\begin{array}{ll}
3^{c}=1 & \text { experiment } \\
3^{1}=3 & 0,1,2,3,45,6,7 \\
3^{2}=9 & \text { units digit } \\
3^{3}=27 & 1,3,9,7,1,3,9,7, \\
3^{4}=81 &
\end{array}
$$

2

$$
\left.\begin{array}{l}
2+1+\frac{1}{2}+\frac{1}{4}=3 \frac{3}{4} \\
4+1+\frac{1}{2}+\frac{1}{8}=5 \frac{5}{8}
\end{array}\right\} \text { sunn }=9 \frac{3}{8}
$$

$$
3 \quad G C D=315=3^{2} 57
$$

$$
L C M=3^{2} \cdot 5^{3} 7^{2}
$$

Pairs are of the form $3^{2} .5 .7 x$ and $3^{2} .5 .7$ y where x and y have no common factor >1 and $x^{2} y \leq 5^{2.7}$
Two possibilities. $\quad x=5^{2} .7, y=1$

$$
x=5^{2}, y=7
$$

One pair

$$
3^{2} \cdot 5 \cdot 7 \cdot 5^{2} \cdot 7=55,125 \text { and } 3^{2} \cdot 5 \cdot 7 \cdot 1=315
$$

Line

$$
3^{2} \cdot 5 \cdot 7 \cdot 5^{2}=7,875 \text { and } 3^{2} \cdot 5 \cdot 77=2,205
$$

ROUND II

$$
\begin{aligned}
& \text { 1. }\left(\frac{2}{3}(-6)-\left(\frac{1}{2}\right)(-9)(-12)(-0.8)(8)(-6)(-12)(11)\right. \\
& =-4+273,715.2=273,711.2
\end{aligned}
$$

$$
N=\text { not integer } \quad .5 \text { pairs }
$$

3 Right: $25 Q+10 D=2000$
Error: $10 Q+25 D=2900$

$$
\begin{aligned}
5 Q Q+125 D & =14500 \\
50 Q+20 D & =4000 \\
\hline 105 D & =10500 \\
D & =100
\end{aligned}
$$

ROUND III

1. Ext angle sum $=360^{\circ}$

$$
3 c+75=360 \Rightarrow c=95
$$

2. Slope of $\overline{A B}=$ slope $f \overrightarrow{B C}$

$$
\frac{3}{4}=\frac{x-7}{7} \quad \Rightarrow \quad x=12 \frac{1}{4}
$$

or use similar triangles
3 Let circle radius $=1$, use $30,60,90 \Delta s$

$$
\frac{\pi 1^{2}}{\frac{(4 \sqrt{3})^{2}}{4} \sqrt{3}}=\frac{\pi}{12 \sqrt{3}}
$$

ROUND IV

$$
\begin{aligned}
& 13 \cdot \sqrt[3]{8}^{2} \cdot \sqrt[3]{\frac{8}{27}}=3 \cdot 4 \cdot \frac{2}{3}=8 \\
& x+6=196-28 x+x \\
& 0=x^{2}-29 x+190 \\
& =(x-10)(x-19) \\
& x=10 \quad \text { since } 4=14-10 \\
& x=19 \quad \text { since } 5 \neq 14-19
\end{aligned}
$$

3 Express all logs in terms of the same base, ln is convenient

$$
\begin{array}{r}
\frac{\ln x}{\ln 2} \cdot \frac{\ln x}{\ln 4} \frac{\ln x}{\ln 6}=\frac{\ln x}{\ln 2} \cdot \frac{\ln x}{\ln 4}+ \\
\frac{\ln x}{\ln 2} \cdot \frac{\ln x}{\ln 6}+\frac{\ln x}{\ln 4} \frac{\ln x}{\ln 6}
\end{array}
$$

Molt by $\ln 2 \cdot \ln 4 \ln 6$ to get

$$
\begin{aligned}
& (\ln x)^{3}=(\ln x)^{2}(\ln 6+\ln 4+\ln 2) \\
& \text { If } \ln x=0, x=1
\end{aligned}
$$

otherwise
$\operatorname{in} x-\operatorname{in}(6.4 ?)$ and $x-48$

ROUND E

1.

$\sin 18^{\circ}=\frac{x}{28560} \Rightarrow x=5284 \mathrm{ft}$
2

$$
\text { Arc length } \frac{L}{2 \pi 10}=\frac{0.5}{2 \pi} \Rightarrow L=5 \mathrm{~cm}
$$

$\Rightarrow \quad \sin (A-B)=\sin \cap \cos 3-\cos A \sin B$,
$\sin (\arccos x)=\sqrt{1-x^{2}}, \cos (\arccos x)=x$

$$
\begin{array}{r}
\therefore \sqrt{1-x^{2}} \frac{\sqrt{3}}{2}-x \frac{1}{2}=x \\
\sqrt{1-x^{2}} \cdot \sqrt{3} \quad 3 x \\
1-x^{2}=3 x^{2} \Rightarrow x=\frac{1}{2} \text { on chat } \int_{x}^{\frac{1}{2}}
\end{array}
$$

TEAM ROUND
1．）つへつ
-539
$\therefore B=4, A=2$ and $A+B=6$
2 Let $F=$ fathersage,$Y=$ years sought

$$
F+Y=4(33-F+Y)
$$

$$
5 F-132=3 y>0
$$

So $5 F>132$ and $F>26.4$
If $F=27,28=4.7$ and we get smallest $y=1$

3

$y=$ diam of circle

$$
3.5 \pi y=\pi \Rightarrow y=\frac{2}{7}
$$

4 A yes add a
B no，$x=2, y=1$ gets $-1>0$
（ no becomes $-x>-y$
1）no $x=2, y-1$ gets $\frac{1}{2}>1$
L n_{0} ab $-1, x-3$ y 1 gats $-1>1$
F yes．since positive
5 Using a graphing cakulator， $0^{\circ} \leq \theta \leq 6^{\circ}$

3 intersection pis for $J^{\prime}<\theta<6^{\circ}$ $3 \cdot \frac{180}{6}=90$ pts for $0^{\circ} \leq \theta<180^{\circ}$ and 91 for $0<x \leq \pi$
$6 \quad 2^{\overline{2}}, 2^{\overline{3}}, 2^{2}, \ldots$

$$
\begin{aligned}
& \alpha^{\frac{1}{2}}=2^{\frac{1}{3}} \Rightarrow r-\frac{2^{\frac{1}{3}}}{2^{\frac{1}{2}}}=2^{-\frac{1}{6}} \\
& \text { Then } 2^{\frac{1}{6}} 2^{-\frac{1}{6}}=2^{0}-1
\end{aligned}
$$

$\rightarrow \times 4$

$$
\begin{aligned}
& x^{2}-(\text { root sum }) x+(\text { is product })=0 \\
& x^{2}-12 x+25=0
\end{aligned}
$$

$8 \frac{60.9 .8 .765+3.1 \mathrm{sec}}{\frac{60 \mathrm{scc}}{\mathrm{min}} \frac{60 \mathrm{~min}}{\mathrm{hr}} \cdot \frac{24 \mathrm{hr}}{d \mathrm{ay}}}=42$ cays
9

[^0]: Hudson, Shrewsbury, Tahanto

